
CONJUGATE NONSTATIONARY HEAT TRANSFER FOR A 

THIN PLATE IN THE FLOW OF AN INCOMPRESSIBLE LIQUID 
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We obtain the solution in the whole plane of the flow for  a nonstat ionary conjugate problem in 
heat t r a n s f e r  for  a plate in an incompress ible  liquid. 

Le t  us consider  the aerodynamic  heating of a semi- inf ini te  plate.  At the external  surface  of the plate 
y = 0 the para l le l  incompress ib le  flow of a liquid is incident. The the rmal  flux ac ros s  the inner surface  of 
the plate y = - h  is specified (Fig. 1). For  t = 0 there  are  sources  inside the plate which a re  functions of 
t ime and the coordinates .  This does not affect  the s ta t ionari ty  of the hydrodynamic flow since the flow is 
incompress ible .  The t empera tu re  field of the plate and liquid is nonstat ionary.  

The nonstat ionary heat t r an s f e r  problem was considered as a conjugate problem in Lykov's  sense 
by P e r e l ' m a n  [1-2]. To obtain the solution of problem in the whole field of the flow, apar t  f rom the leading 
edge of the plate (x = y = 0), the complete sys tem of N a v i e r - S t o k e s  equations was used in addition to the 
complete heat conduction equation for  an incompress ib le  liquid and the heat conduction equation for  the body: 
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with the initial and boundary conditions: 

u = v = O  for y=O,  x:>O~ (6) 

u---*U:o, v--+O for y - , c o ,  (7) 

v=O, OU = 0  for y=O,  x<O,  (8) 
Oy 

r ~ ( %  (9) 

= o ,  (io, 
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Fig, 1. Physical  model and coordinate sys tem.  

~p ( a~_p._T | ~ ) ~-F(x, t). (11) 
\ Oy y=_~, 

x>O 

The function F(x, t) is specified and independent of the 
t ime for  t < O, 

T=Tp for y=0, x > 0 ,  (12) 

T (x, y, t) --~ T~ for y-~  co, (13) 

( ow_)l 
\--Ox ]/~=o = O; (14) 

T(x, y, 0) = Z(x, y) is the t empera tu re  field in the whole flow before  the inclusion of sources  (Z(x, y) is 
found below). We s e e k t h e  solution of the problem (1)-(14) in the domain x 2 + y2> 12, where  l is a dimen- 
sion of the o r d e r  of the mean f ree  path of a molecule since Eqs.  (1)-(14) a re  meaningful in domains with 
typical  dimensions much g r e a t e r  than l .  The problem (1)-(3) was solved in [3-5] in the above domain with 
the boundary conditions (6)-(8) in the boundary l aye r  approximation using parabolic  coordinates  x = ~2_V2, 
y = 207, since,  by using these coordinates  in the boundary l aye r  approximation,  we can take account of the 
effect  of the boundary l aye r  on the basic flow and avoid having to join up the solutions in different  pares of 
the flow. 

We solve the thermal  problem in the liquid by using parabolic  coordinates  and the solution of the 
hydrodynamic problem obtained in [3-5]. In (4) we put u = 0$/0y,  v = - a $ / 0 x  and t r ans fo rm to nondimen- 
sional var iables :  

1 (2U_~/2  ~ 2U, t 

le t t ing Re ~ oo to obtain the usual boundary l ay e r  approximation.  We note that in the explicit  express ion  
for  ~(~, 77) t e r m s  with negative powers  of ~ may be dropped for  the hydrodynamic problem was solved in 
[3-5] in this approximation.  After  this simplification,  the Eq. (4) and its boundary conditions take the fol-  
lowing forms  in the var iables  ~, V, t: 

2~ ~ aT _~_~f, aT aT 1 O2y V~ 
u. " W  ~ -  - f  a-~ - -  p~ 0~--7 + - c  (r')', (15) 

where  f(~) is the solution of the p~oblem 

dV ? f  d~f ----0; f ( 0 ) = f ' ( 0 ) = 0 ;  [ ' (oo)=l ;  
d~3 d~2 

[ (~)= 2E 5! + . . . .  for small, q; a1=0.4696...; 

[1 ]] f(n)=n--[~+O 1 exp ----~- (~---fl) 2 forlarge n; 

1~ = 1.2168 . . .  ; 
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We average Eq. (15) over the thickness of the plate: 

OTav 02Tar ~p { O ~  1[ __~__[ OTp II -4- Qav(X, t), (21) 
9pCp ~ = Z p - ~ U  + h \ OV I ~ o - -  h k O"-7 ]]y.>oh " 

0 0 

t t where Tar  --- 1/h Tp(x, y, t)dy, Qav -- 1/h Q(x, y, 0dy.  We replace Tav by TNy = o, sinee the plate is 
- - h  - - h  

assumed to be thin. As a resul t  of this approximation and the use of the boundary conditions (16), (18), 
and (20), Eq. (21) is t ransformed to the form 

OT[~-=o O~T,~=o 1 (O_T) 
- -  = a - -  + R (x, t) + A , ( 2 2 )  

Ot Ox 2 -~- h-=0 / 
where 

a =  ,; A = - -  ~ ; 
eppp 2hppcp 

P (x' t) = 1 [ Qav(x' t ) -  1 ] pp.Cp - #  F (x, t) . 

where Rk(t) = const for t < 0. 

Le t  R(x, t) be represented as a general ized power ser ies :  

n ~  ~ k_l+ m 
R (x, t) R*. (t) x ~ =  ~ &  (t) x m + + * . . . .  R ~ : ,  m (t) x ~ 

tz=O m=O ra=O 

Since Eqs. (22), (15) are l inear ,  it  is sufficient to solve them for 

=2 R (x, t) Rk (t) x ~ 0 ~ O < 1, 
k=o 

We seek the solution of the problem in the form 

T(~, ~1, t)= O(~, ~1' t)exp --  ~ -  fdq +T=(~), 

0 

where T2(~) sat isf ies  the equation 

with the boundary conditions 

d-~ ----U + pr [ d--~ c 

(23) 

dT~= = O, T2(~)-~T~ as ~l-~Cr 
d~l 

T2(~) is the solution of a problem s imi la r  to Polhausen's  problem, but in the variable~.  T2(~) gives the 
tempera ture  distribution in the whole flow (apart f rom the region x 2 + y2 = (~2 + (v/2Uoo)~2)2 ~/2),  while the 
Polhausen problem defined the temperature  field only above the plate. We note that T i = T2(0) sat isf ies  (5) 
for Q(x, y, t) ~- 0 and F(x, t) --- 0. Consequently, in this case Z(~, ~) -= T2(() (from the definition of Z(~, ~)). 
The function | ~-, t) is defined by the solution of the following problem: 

O~ ~ + - ~  O = P r  U~ --Ot + ~f' - ~  , (247 

OO[n--~ a = ~ R ( x ,  t ) + A  - -  , ( 2 5 )  
8t Ox 2 ~ ~=o 

00 '  (26) 

 )o=o =~ 
( O0[h-~~ ~ = O, (26') 
~--~U-/~=o 
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as ~ - - + o o .  ( 2 7 )  

We seek the solution of the problem (24)-(27) in the form of a se r i es :  

k l 

(The l imits  of summation a re  defined below. ) 

Substituting (28) in (24), we find that 

•  - - - 7 -  + p~/'x~ ) 

The equations for  Yk(~, t) and ~l(~, t) a r e  combined in (29). 

(28) 

( 2 9 )  

They a re  obtained by the change of var iables  

xa--~Y h, ~k--~2(p-{-k+ 1), 
2 

~0 --~ - -  , ( 3 0 )  
U| x/~.--,'-r ~k__~2(9+k, +1 ) .  

Noting that x = ~2 for  ~ = 0, we substi tute (28) in (25). Equating the coefficients of like powers of x 
we have 

dYk : a(p+k+3) (p+k+2) Vk+2-I-'~k+l~-,'" , D ' 4~V~+1 for X ~ (31) dt 
t 

d% =a(zo+k+2)(zo+k+l) %+~ + A~ for x p+k + 2- (32) dt 

w h e r e  

�9 (aY~ 1 v,~ (t)=Gk-=,, .~,~ (t)= k~ - /~ -=o  ; 

( acPh 

z0 = P + 1/2. 

(33) 

To obtain the equations linking Yk and ~rk, t k  and ~k,  we have to use (29). Equation (29) has two solutions. 

Af ter  determining an asymptot ic  express ion for  V~k as ~--- % and es t imates  of the heat flux Q = ~ t (0T 

show that of the two solutions of (29) only that for  which >Ok ~ C k ( t ) / ~ e x p { -  ~ (Pr f  /~Y) x ~ c 2 d Y ~  w e  c a n  
- -  , 

~l 0 
) 

/ 2 ) d ~  a s ~  ~o is suitable.  It defines the t empera tu re  field T ~ u(~, t)/vrffexp{ - ( 'Pr  fd~  which is physical-  
) 

0 
ly  meaningful as ~ ~ r Le t  us find the solution as-~ ~ 0. We note that f2 ~ O(~4), f, ~ a 1~/ + O(~) as ~ ~ 0. 
Then, to any accuracy  of~  3, we can rewr i te  (29) as 

0~• ~ Pra~ (~tk + 2 ) ~ •  = ~~ Pr 0• (34) 

Equation (34) has two solutions,  one of which ~ 0 ,  while the o ther  ~ as ~ ~. In Eqs.  (29) and (34) the 
coeff icients  of }'~k a r e  monotonic functions and since 

the increasing solution of (29) inc reases  more  rapidly than the increasing solution of (34), while the de-  
c reas ing  solution of (34) dec r ea se s  more  slowly than the decreas ing  solution of (29). Hence the relat ion 
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between ~tk(0) and (0Xk/0~) g _  0 for  the decreas ing  solution of (34) is l i t t le  different  f rom the corresponding 
relat ion between ~k(0) and '~O-~k/O~)g= o for  the decreas ing  solution of (29). 

If we make the change of var iable  z = [atPr ~t k + 1/2)]t/3~ in (34), and solve the result ing equation by 
the method of varying the a r b i t r a r y  constants,  we find the solution which tends to zero  as z ~ oo: 

z 

• [a~Pr pr~~ ]~ /3{[ fO~o?~Ai (~)d~]Bi ( z ) - - [ . ;Orr  

where  

Ai (z) Bi (z) = const. Ai (z), Bi(z) are Airy functions: W o = A'i (z) B'i(z) 

F rom (35), noting (30) and (33), we obtain 

-yh(t) {alPr [ 2(p+k)+ 5]ll/aA'i(O) 
= 2 ] 1  

y~ (t) Ai (0) ~ p~' 

~h(t ) {a~Pr [2(9+k)+ 3 ] }  ~/aA'i(O) 

% (t) Ai (0) = qk. 

(36) 

The form of the r e c u r r e n c e  relat ions (31)-(32) for  k < 0, noting that R k = 0 (for k < 0), noting the conditions 
(26), (26'), and that 1/~(~0/0~)~= o is bounded as x ~ 0, shows that ~o l = 0, l < 3; Yk = 0, k < 1. Writing 
out the r e c u r r e n c e  relat ions (31) for  k = 0, 2 . . . . .  2 ( m - l ) ,  noting (36), we apply the opera tor  ai- l I ' (p  + 2i) 
d m - i / d t  m- i  to the i - th  row and add all the relat ions.  Then 

m 

Z a~-W (P -t- 2i) d m-i 
Y ~  = - -  amr (p .-!- 2m + 2) dt m-i (Aq~- l~ - I  q- R2~_I). (37) 

i = l  

Similar ly,  for  odd k, we find that 

a " r  (p + 2i + 1) d m-i 
Y~+I = --  "~ amp (p + 2m q- 3) dt m-i (Aq~i~21 + R21). (38) 

Substituting (37) and (38) in (32) yields the following for  even k: 
t/z 

r = 1.-" ~ @ AP~m amp (9 + 2m + 2) dt m-f (Aq~-xcP~-~ + R2~_x) [a (zo-i-2m+2)(Zo-'t-2m+ 1)] (39) 
i = l  

and the following for  odd k: 
rt~ 

dog,m+1 @ Ap~m+t . (40) %m+a = dt a'nP (p -1- 2m + 3) d/a-i (Aq21%i -5 Rzi) [a (Zo ,4-2m+3 ) (Zo+2m+2)] 
i = O  

All the functions Yk(t), k = 1, 2 . . . .  and ~l(t), l = 3,4 . . . .  a r e  determined f rom the r ecu r r en ce  relat ions 
(37)-(40) in t e r m s  of the Rk(t)-eoeffieients  of the source .  

If in (35) instead of Ck(t) we substitute ~vk(t)/Ai(0 ) and Yk(t)Ai(0), we find 4"k(~, t) and Yk(~, t) r e s -  
peet ively for  small  ~. Using (28) and (23), we determine the t empera tu re  field T(~, ~, t) for  small  ~. 

We wri te  down f rom (16), (18), (23), (28), (33), and (36) the express ions  for  the t empera tu re  at the 
surface  of the plate and the thermal  flux ac ross  it: 

T ~ XO+k+l ?+t+ 5"@ ptu=o = .~ Yk (t) + q~ (t) Tl, 
k = l  l = 3  

co 

q=y 
k = l  l = 3  
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where  T l = T2(0). We note that in the case of sources  which a re  independent of the t ime,  ~Ok(t) = coast,  
Yk(t) = coast ,  Rk(t) = const,  and the r e c u r r e n c e  re la t ions  (31)-(32) take the form 

Aq~+l~+l + Rh+l 
Yk+z:-- a(p+k+3) (9+k+2) ' 

Ap~yk 
% + 2 = - -  a(z  0 + k + 2 ) ( z  o + k +  1) " 

This solution of the s ta t ionary problem defines the field Z(~, ~). 
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v 
U~o 
T 
Tp 
Too 
L = Rev/Uoo 
h 
Xp 

# 

Cp 
C 

o 
p r  
Re 
Q(x, y, t) 
~(x, y) 
p 

N O T A T I O N  

is the liquid veloci ty in the x direction; 
is the liquid veloci ty  in the y direction; 
is the veloci ty  of the incident flow; 
is the liquid t empera ture ;  
is the plate t e m p e r a t u r e ;  
is the t empera tu re  of the incident flow; 
is an appropr ia te  p a r a m e t e r  in the x direction; 
is the plate thickness; 
is the heat  t r a n s f e r  coefficient  of the plate; 
is the heat t r a n s f e r  coefficient  of the liquid; 
Is the thermal  diffusivity coefficient  of the plate; 
is the dynamic viscos i ty  coefficient  for  the liquid; 
is the kinematic v i scos i ty  coefficient  for  the liquid; 
is the heat capaci ty of the plate; 
is the heat  capaci ty  of the liquid; 
is the plate density; 
is the liquid density; 
IS the Prandfl  number; 
is the Reynolds number; 
is the specif ic  intensity of the sources;  
is the s t r eam function; 
is the liquid p r e s s u r e .  

1o 

2, 

3, 
4, 
5. 
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