CONJUGATE NONSTATIONARY HEAT TRANSFER FOR A
THIN PLATE IN THE FLOW OF AN INCOMPRESSIBLE LIQUID
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We obtain the solution in the whole plane of the flow for a nonstationary conjugate problem in
heat transfer for a plate in an incompressible liquid,

Let us consider the aerodynamic heating of a semi-infinite plate. At the external surface of the plate
y = 0 the parallel incompressible flow of a liquid is incident. The thermal fiux across the inner surface of
the plate y = —h is specified (Fig. 1). For t = 0 there are sources inside the plate which are functions of
time and the coordinates. This does not affect the stationarity of the hydrodynamic flow since the flow is
incompressible. The temperature field of the plate and liquid is nonstationary.

The nonstationary heat transfer problem was considered as a conjugate problem in Lykov's sense
by Perel'man [1-2], To obtain the solution of problem in the whole field of the flow, apart from the leading
edge of the plate (x =y = 0), the complete system of Navier—Stokes equations was used in addition to the
complete heat conduction equation for an incompressible liquid and the heat conduction equation for the body:
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where the dissipative function ¢ is given by
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T(x, y, 0) = Z(x, y) is the temperature field in the whole flow before the inclusion of sources (Z(x, y) is
found below)., We seek the solution of the problem (1)-(14) in the domain x% + y? = 12, where [ is a dimen-
sion of the order of the mean free path of a molecule since Eqs. (1}-(14) are meaningful in domains with
typical dimensions much greater than I. The problem (1)-(3) was solved in [3-5] in the above domain with
the boundary conditions (6)-(8) in the boundary layer approximation using parabolic coordinates x = g2n?,
y = 2&, since, by using these coordinates in the boundary layer approximation, we can take account of the
effect of the boundary layer on the basic flow and avoid having to join up the solutions in different parts of
the flow,

We solve the thermal problem in the liquid by using parabolic coordinates and the Asolution of the
hydrodynamic problem obtained in [3-5]. In (4) we put u =9¢y/0y, v =-—8¢/6x and transform to nondimen-
sional variables: ’ '
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letting Re — « to obtain the usual boundary layer approximation. We note that in the explicit expression
for &£, n) terms with negative powers of ¢ may be dropped for the hydrodynamic problem was solved in
[3-5] in this approximation, After this simplification, the Eq. (4) and its boundary conditions take the fol-

lowing forms in the variables £, 7, t:
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where f(n) is the solution of the problem
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We average Eq. (15) over the thickness of the plate:
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assumed to be thin, As a result of this approximation and the use of the boundary conditions (16), (18),
and (20), Eq. (21) is transformed to the form
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Let R(x, t} be represented as a generalized power series:
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Since Eqgs. (22), (15) are linear, it is sufficient to solve them for
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where Rk(t) = const for t < 0, We seek the solution of the problem in the form
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Tz(ﬁ) is the solution of a problem similar to Polhausen's problem, but in the variable . Tz(ﬁ) gives the
temperature distribution in the whole flow (apart from the region x% + y2 = (£2 + (v/2U, )92 = 1%), while the
Polhausen problem defined the temperature field only above the plate, We note that T, = Ty(0) satisfies (5)
for Q(x, y, t) = 0 and F(x, t) = 0, Consequently, in this case Z(£, 7) = Ty() (from the definition of Z(£, 7))
The function ®(¢, 7, t) is defined by the solution of the following problem:
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We seek the solution of the problem (24)-(27) in the form of a series:
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(The limits of summation are defined below.)

Substituting (26) in (24), we find that
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The equations for Yk(_f), t) and él(ﬁ, 1) are combined in {29). They are obfained by the change of variables
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To obtain the equations linking Yk and §k» ¢k and g—ék, we have to use (29). Equation (29) has two solutions.
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After determining an asymptotic expression for ®j as 7 — «, and estimates of the heat flux Q =2 \ (aT
/E)y)X = _c2dy, we can show that of the two solutions of (29) only that for which mk ~ ck(t)/xf 7 exp{— g(Prf
/2)d7} as— « is suitable. It defines the temperature field T ~ (¢, £)/7 exp{— ‘pr fdn} which is physwal—
ly meaningful as 1 — «, Let us find the solution as n— 0. We note that {2 ~ O(n4), f'~am+ Oy as —0.
Then, to any accuracy of 17°, we can rewrite (29) as
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Equation (34) has two solutions, one of which —~0, while the other —~« as 77 — ., In Eqgs. (29) and (34) the
coefficients of Yy are monotonic functions and since
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the increasing solution of (29) increases more rapidly than the increasing solution of (34), while the de-
creasing solution of (34) decreases more slowly than the decreasing solution of (29). Hence the relation
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between 1k(0) and (Bnk/an) = ¢ for the decreasing solution of (34) is little different from the corresponding
relation between »i(0) and? Mk/an)77 = ¢ for the decreasing solution of (29).

If we make the change of variable z = [2,Pr () + 1/ 2)]‘/ % in (34), and solve the resulting equation by
the method of varying the arbitrary constants, we find the solution which tends to zero as z — «:
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The form of the recurrence relations (31)-(32) for k < 0, noting that Rk = 0 (for k < 0), noting the conditions
{26), (26", and that 1/5(8@/837) = ¢ is bounded as x — 0, shows that ¢; =0, 1< 3; ¥ =0, k<1, Writing
out the recurrence relations (31) fork=0, 2,...,2(m-1), noting (36), we apply the operator al- Ir(p + 2i)
dM-i/g¢m-i t5 the i-th row and add all the relations, Then
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Similarly, for odd k, we find that
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Substituting (37) and (38) in (32) yields the following for even k:
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All the functions y(t), k=1, 2,... and ¢(t), I =3,4,... are determined from the recurrence relations
(37)-(40) in terms of the Ri(t)-coefficients of the source.

If in (35) instead of Ci(t) we substitute ¢i(t)/Ai(0) and i (t)Ai(0), we find ék(n t) and Y, t) Tres-
pectively for small 1, Using (28) and (23), we determine the temperature field T(, 7, t) for small 7.

We write down from (16), (18), (23), (28), (33), and (36) the expressions for the temperature at the
surface of the plate and the thermal flux across it:
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where T; = Ty(0). We note that in the case of sources which are independent of the time, ¢ (t) = const,
yk(t) = const, Ri(t) = const, and the recurrence relations (31)-(32) take the form
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This solution of the stationary problem defines the field Z(£, ).

NOTATION
u is the liquid velocity in the x direction;
v is the liquid velocity in the y direction;
Ueo is the velocity of the incident flow;
T is the liquid temperature;
Tp is the plate temperature;
T is the temperature of the incident flow;
L =Rev/U, is an appropriate parameter in the x direction;
h is the plate thickness;
Ap is the heat transfer coefficient of the plate;

A is the heat transfer coefficient of the liquid;

a is the thermal diffusivity coefficient of the plate;

U is the dynamic viscosity coefficient for the liquid;
v is the kinematic viscosity coefficient for the liquid;
is the heat capacity of the plate;

c is the heat capacity of the liguid;

Pp is the plate dengity;

o) is the liquid density;

Pr is the Prandtl number;

Re is the Reynolds number;

QAx, y, b ig the specific intensity of the sources;
P(x, y) is the stream function;

D is the liquid pressure,

LITERATURE CITED

1, T. L. Perel'man, in: Heat and Mass Transport [in Russian], Vol, 5, Izd. AN BSSR (1963).

2. A, V, Lykov and T. I.. Perel'man, in: Heat and Mass Transport for Bodies in a Gaseous Medium [in
Russian], Nauka i Tekhnika, Minsk (1965).

3. N. E. Kochin, Collected Works [in Russian], Vol, 2, Izd. AN SSSR (1949), p. 493.

4, S. Kaplun, J. Appl. Math. Phys., (Basel), 5, 111 (1954).

5, P. A, Langestrom and S. Kaplun, Eighth Internat, Congress on Theor. and Appl. Math. (Istanbul)
(1952).

753



